PHOTOSENSITIZED OXYGENATION OF 2-PHENYL-1,3-OXAZEPINE1

Osamu SESHIMOTO, Takahiro TEZUKA, ² and Toshio MUKAI *

Department of Chemistry, Faculty of Science, Tohoku University

Aoba, Aramaki, Sendai 980

The dye-sensitized photooxygenation of 2-phenyl-1,3-oxazepine ($\underline{1}$) in methylene chloride yields fragment products, $\underline{2}$, $\underline{3}$, $\underline{4}$, and $\underline{5}$. Among them, pyrrolinone ($\underline{2}$) and butenolide ($\underline{3}$) are assumed to originate from the 1,4-epidioxide ($\underline{6}$), and ethylidene malonaldehyde ($\underline{4}$) from dioxetane ($\underline{10}$) or 1,6-epidioxide ($\underline{11}$).

Although the photo-sensitized oxygenation of the unsaturated five-membered heterocycles has extensively been investigated, that of the seven-membered heterocyclic compounds is little known, except for a recent paper on 1,2-diazepines. In connection with this, we wish to report the first example of the photooxygenation of a 1,3-oxazepine. The photo-oxidation of 2-phenyl-1,3-oxazepine (1) in the presence of methylene blue afforded several oxidized fragments arising from the 1,2-(or 1,6) and 1,4-additions of singlet oxygen.

A solution of $\underline{1}$ (300 mg) in dry methylene chloride (200 ml) containing methylene blue (20 mg) was photolyzed (tungsten lamps, Pyrex vessel) for 12 hr while a stream of oxygen was bubbled through the solution. Separation of the photolysate was achieved by silica gel t.l.c. (benzene: ether, 4:1) to give pyrrolinone ($\underline{2}$), mp 104-106°, butenolide ($\underline{2}$), mp 150-150.5°, ethylidene malonaldehyde ($\underline{4}$), mp 126-128°, and N-formylbenzamide ($\underline{5}$), mp 108°, in 7, 18, 15, and 13 % yields, respectively, in addition to a small amount of 2-phenyl-3-hydroxypyridine and benzamide. The structures of products were characterized by the following spectral properties as well as by chemical evidence. For $\underline{2}$, m/e, 203 (9 %), 105 (100 %); $\boldsymbol{\gamma}_{\text{max}}$ (KBr), 3400, 1750, 1665 cm⁻¹; λ_{max} (EtOH), 239.5 nm (log ϵ , 3.99); $\boldsymbol{\delta}$ (CCl₄), 5.0 (1H, broad), 6.08 (1H, J=6.0 and 1.2 Hz), 6.33 (1H, J=2.0 and 1.2 Hz), 7.10 (1H, J=6.0 and 2.0 Hz) and 7.25-7.70 (5H). For $\underline{2}$, m/e, 203 (18 %), 105 (100 %); $\boldsymbol{\gamma}_{\text{max}}$ (KBr), 3350, 1775 cm⁻¹; λ_{max} (EtOH), 227 nm (log ϵ , 3.18) and 272 (1.91); $\boldsymbol{\delta}$ (acetone-d₆), 6.26 (1H, J=5.5 and

2.0 Hz), 6.90 (1H, J=9.0, 2.0, and 1.8 Hz), 7.57 (1H, J=5.5 and 1.8 Hz) and 8.56 (1H, broad J=9.0 Hz). For 4, m/e, 203 (30 %), 105 (100 %); γ $_{\rm max}$ (CHCl $_3$), 1720, 1665, and 1593 cm $^{-1}$; $\lambda_{\rm max}$ (EtOH), 228 nm (log ϵ , 4.01), 267 (4.14) and 312 (4.03); δ (DMSO-d $_6$), 8.62 (1H, J=12.0 and 3.3 Hz), 9.79 (1H, singlet), 10.06 (1H, J=3.3 Hz), and 12.6 (1H, broad with J=12.0 Hz). Independently, 2 was also synthesized by the photooxidation of N-benzoylpyrrole in methanol under the same conditions used for 1, where, however, N-benzoyl-5-methoxy- Δ 3 -pyrroline-2-one, mp 91-92°, was the main product. Catalytic hydrogenation of butenolide (3) on Pd-C gave 4-benzoylaminobutanolide, mp 159-160°. Compound 5 was identified by comparison with an authentic sample. In addition products 2 - 5 were all readily hydrolyzed with aqueous sodium hydroxide solution to give benzamide in good yields, suggesting that benzamide is not a primary photo-product. 2-Phenyl-3-hydroxypyridine is considered not to be a photo-product but a product originating from the vibrationally excited state.

The pyrrolinone and butenolide products, $\underline{2}$ and $\underline{3}$, could arise through 1,4-addition of singlet oxygen to the diene portion of $\underline{1}$, leading to the 4,7-endo-peroxide ($\underline{6}$). Successive 0-0 bond cleavage of $\underline{6}$ affords diradical ($\underline{7}$), which then undergoes cleavage of the allylic C-0 bond to form diradical ($\underline{8}$). It is then possible to derive both lactone and lactam type products, $\underline{2}$ and $\underline{3}$, from the same intermediate ($\underline{8}$) through hydrogen abstraction by the N- or 0-radical and subsequent recombination of the resulting diradicals. It should be noted here that no products from the 2,5-endo-peroxide ($\underline{9}$) have been detected, and therefore 1,4-addition of singlet oxygen did not occur in the diene portion containing a nitrogen atom. This observation coincides with the case of 1,2-diazepines.

A plausible explanation for the formation of ethylidene malonaldehyde (4) is

outlined in the following reaction scheme passing through either dioxetane ($\underline{10}$) or 2,7-endo-peroxide ($\underline{11}$). The former could arise from 1,2-addition of the oxygen to the C_6 - C_7 position of $\underline{1}$, and the latter from 1,6-addition to the C_2 - C_7 position. The oxetane ring opening of $\underline{10}$ leads to formate ($\underline{12}$), which in turn converts into the product ($\underline{4}$) via N-benzoyl dialdehyde ($\underline{13}$) by 1,5-formyl migration and subsequent proton transfer. On the other hand, the other epidioxide ($\underline{11}$) could lead to the intermediate ($\underline{13}$) by Baeyer-Villiger type rearrangement followed by 1,3-formyl migration of the resulting formate ($\underline{14}$). A precedent example $\underline{9}$ suggests the further oxidation of the carbon-carbon double bond of $\underline{4}$ giving N-formylbenz-amide ($\underline{5}$).

(1)
$$\xrightarrow{1_{02}}$$
 $\xrightarrow{7}$ $\xrightarrow{0}$ $\xrightarrow{0}$ $\xrightarrow{P_h}$ $\xrightarrow{0}$ $\xrightarrow{0$

Contrary to the case of 1,2-diazepines, ⁵ we were not able to isolate any initial adducts of 2-phenyl-1,3-oxazepine (<u>1</u>) and singlet oxygen. Accordingly the mechanistic considerations are speculative at present. However, the proposed reaction paths such as 0-0 bond cleavage, formyl migration and Baeyer-Villiger type rearrangement have been confirmed in the photooxygenation of the corresponding five-membered analogs, i.e., isoxazole derivatives. ¹⁰ In connection with the photooxygenation of electron-rich olefins such as enamines ¹¹ and vinyl ethers, ¹² there is

possibility that peroxiranes or zwitterion intermediates would be the precursors of epidioxides $(\underline{6})$, $(\underline{10})$, and $(\underline{11})$. To clarify the reaction mechanism further studies are in progress.

References and notes

- 1) Organic Photochemistry XXXVII. Part XXXVI, T. Kumagai and T. Mukai, Chem. Lett., <u>1975</u>, 1187.
- 2) Present address: Department of Chemistry, the University of Tsukuba, Ibaragi 300-31.
- 3) R.W. Denny and A. Nickon, Org. Reactions, 20, 133 (1973).
- 4) Recently we have obtained an <u>endo-peroxide</u>, mp 88-89°, from N-methoxycarbonyl lH-azepine in high yields.
- 5) T. Tsuchiya, H. Arai, H. Hasegawa, and H. Igeta, Tetrahedron Lett., 1974, 4103.
- 6) Satisfactory elemental analyses were obtained for new compounds.
- 7) P. de Mayo and S.T. Reid, Chem. Ind., 1962, 1576.
- 8) T. Tezuka, O. Seshimoto, and T. Mukai, Tetrahedron Lett., 1975, 1067.
- 9) D.A. Lightner and C.-S. Pak, J. Org. Chem., 40, 2724 (1975).
- 10) H.H. Wasserman, F.J. Vinick, and Y.C. Chag, J. Am. Chem. Soc., 94, 7180 (1972).
- 11) C.S. Foote, A.A. Dzakpasu, and J.W.-P. Lin, Tetrahedron Lett., 1975, 1247.
- 12) M.J.S. Dewar and W. Thiel, J. Am. Chem. Soc., 97, 3978 (1975).

(Received May 21, 1976)